Project 458896

Exploring mechanisms of bystander T cell activation in off-target neuropathology during Zika virus infection

458896

Exploring mechanisms of bystander T cell activation in off-target neuropathology during Zika virus infection

$105,000
Project Information
Study Type: Unclear
Research Theme: Biomedical
Institution & Funding
Principal Investigator(s): Balint, Susan E
Supervisor(s): Ashkar, Ali A
Institution: McMaster University
CIHR Institute: Infection and Immunity
Program: Doctoral Research Award: Canada Graduate Scholarships
Peer Review Committee: Doctoral Research Awards - A
Competition Year: 2021
Term: 3 yrs 0 mth
Abstract Summary

Zika virus (ZIKV) is an emerging mosquito-borne and sexually transmitted virus. The most recent South American epidemic in 2015-2016 identified several devastating effects of ZIKV infections. These include the development of microcephaly in growing fetuses and paralysis in adults. ZIKV has become a continued health threat in Latin America, Africa, and Southeast Asia through both mosquito-borne and sexual transmission, but there are currently no vaccines or treatments. Normally, CD8+ T cells should target and kill ZIKV-infected cells while leaving healthy cells alone. In our mouse model of ZIKV infection, we identified CD8+ T cells that become highly activated and kill non-infected cells in the brain, resulting in paralysis. In this project, we will examine how these T cells become excessively activated and cause off-target neurological damage. Specifically, we will investigate how inflammation and metabolism in the brain influence CD8+ T cell activation and off-target killing. We will also assess the role of immune cells in the brain, called microglia, in creating these dangerous inflammatory conditions. After determining how these T cells are activated, we will investigate methods to treat and prevent CD8+ T cells from causing off-target brain damage during ZIKV infection. As CD8+ T cells are thought to cause damage in other neurological diseases, like multiple sclerosis, the mechanisms we discover may be applicable to other diseases. Thus, our research will uncover mechanisms of T cell-mediated neurological diseases and identify novel treatment strategies.

No special research characteristics identified

This project does not include any of the advanced research characteristics tracked in our database.

Keywords
Inflammation Innate Immunity Neuroimmunology T Cells Zika Virus